PhD Qualifying Exam in Numerical Analysis

Fall, 2025

Please do any **FIVE** of the following problems only. Each problem counts 20 points.

- 1. Let $A \in \mathbb{R}^{n \times n}$ be a strictly diagonally dominant matrix by rows and $\mathbf{b} \in \mathbb{R}^n$. Prove that the Gauss-Seidel method for the solution of the linear system $A\mathbf{x} = \mathbf{b}$ is convergent.
- 2. Given n+1 distinct points x_0, \ldots, x_n with $n \in \mathbb{N}$. Let $\ell_i \in \mathbb{P}_n$ with $\ell_i(x) = \prod_{\substack{j=0 \ i \neq i}}^n \frac{x-x_j}{x_i-x_j}$ and $\ell_i(x_j) = \delta_{ij}$, $i=0,\ldots,n$.

Prove that the polynomials $\{\ell_i, i = 0, ..., n\}$ form a basis for \mathbb{P}_n .

- 3. Let $f \in C^2([a, b])$.
 - (a) Find the quadrature error of the midpoint formula, $E_0(f)$.
 - (b) Find the quadrature error of the trapezoidal formula, $E_1(f)$.
 - (c) Prove that $|E_1(f)| \simeq 2|E_0(f)|$.
- 4. Fix $0 < T < +\infty$. Given an initial-value problem (IVP): y'(t) = f(t, y(t)), $t \in I$ and $y(t_0) = y_0$, where f(t, y) is a continuous real-valued function in $I \times (-\infty, +\infty)$ and $I = (t_0, t_0 + T)$. For h > 0, let $t_n = t_0 + nh$, with $n = 0, 1, 2, ..., N_h$, be the sequence of discretization nodes of I into subintervals $I_n = [t_n, t_{n+1}]$, where N_h is maximum integer such that $t_{N_h} \le t_0 + T$. Prove that Heun's method has order 2 with respect to h.
- 5. Given a two-point boundary value problem (BVP): -u''(x) = f(x), 0 < x < 1 and u(0) = u(1) = 0, where $f \in C^0([0,1])$. Consider that the approximation to the solution u of the BVP is a finite sequence $\{u_j\}_{j=0}^n$ defined only at grid points $\{x_j\}_{j=0}^n$ with $x_j = jh$ and h = 1/n for $n \ge 4$. Using the centred finite difference for $u''(x_j)$, $j = 1, \ldots, n-1$, obtains the finite difference approximation of the BVP, $A_{\mathrm{fd}}\mathbf{u} = \mathbf{f}$, where A_{fd} is the symmetric $(n-1) \times (n-1)$ finite difference matrix, $\mathbf{u} = (u_1, \ldots, u_{n-1})^{\top}$, and $\mathbf{f} = (f_1, \ldots, f_{n-1})^{\top}$ with $f_j = f(x_j)$. Prove that the matrix A_{fd} is an M-matrix.
- 6. Let I be an interval of \mathbb{R} containing the point t_0 . Consider the scalar Cauchy problem, that is, to find a real-valued function $y \in C^1(I)$ such that

$$\left\{ \begin{array}{lcl} y'(t) & = & f(t,y(t)), & t \in I, \\ y(t_0) & = & y_0, \end{array} \right.$$

where f(t,y) is a given real-valued function in $I \times (-\infty, +\infty)$. Apply the θ -method to the approximate solution of the scalar Cauchy problem.

- (a) Analyze the local truncation error for $\theta \neq \frac{1}{2}$.
- (b) Analyze the local truncation error for $\theta = \frac{1}{2}$.