NYCU Department of Applied Mathematics Qualifying Examination in Algebra for the Ph.D. Program

September, 2025

Show all work and justify every step. If you invoke a theorem, state precisely which result you are using (name and source if relevant). Answers without explanation will receive no credit.

- 1. (a) (5 pts) Prove that no group of ordr mp is simple where p is a prime and 1 < m < p.
 - (b) (5 pts) Prove that no group of ordr 24 is simple.
 - (c) (5 pts) Prove that no group of ordr 30 is simple.
 - (d) (10 pts) Find all simple groups of order ≤ 30 .
- 2. Let $R = \mathbb{Z}[\sqrt{n}]$ where n is a square-free positive integer.
 - (a) (10 pts) Find a multiolicative norm N on R such that $|N(\alpha)| = 1$ for $\alpha \in R$ if and only if α is a unit of R.
 - (b) (10 pts) Show that every $0 \neq \alpha \in R$ that is not a unit has a factorization into irreducibles in R.
 - (c) (5 pts) Show that $\mathbb{Z}[\sqrt{2}]$ is a UFD.
- 3. For any prime $p \in \mathbb{N}$, consider the polynomial

$$\Phi_p(x) = \frac{x^p - 1}{x - 1} = x^{p - 1} + x^{p - 2} + \dots + x + 1.$$

Let ζ be a zero of $\Phi_p(x)$.

- (a) (5 pts) Determine $[\mathbb{Q}(\zeta):\mathbb{Q}]$.
- (b) (5 pts) Find the group structure of the Galois group $G(\mathbb{Q}(\zeta)/\mathbb{Q})$.
- (c) (5 pts) Consider the splitting field E of $x^p 2 = 0$ over \mathbb{Q} . Show that $E = \mathbb{Q}(\sqrt[p]{2}, \zeta)$.
- (d) (5 pts) Determine $[\mathbb{Q}(\sqrt[p]{2},\zeta):\mathbb{Q}]$.
- (e) (5 pts) Show that $x^p 2 = 0$ is irreducible over $\mathbb{Q}(\zeta)$.
- 4. Let G be a finitely generated abelian group, and let H be a subgroup of G.
 - (a) (5 pts) Show that H is finitely generated.
 - (b) (5 pts) Show that G is free of finite rank if and only if G contains no nonzero elements of finite order.
 - (c) (5 pts) Classify all G (up to isomorphism) when G has order 360.
 - (d) (10 pts) Suppose that G and H are free, both of rank n. Fixing the isomorphisms $G \cong \mathbb{Z}^n$ and $H \cong \mathbb{Z}^n$, we have the following commutative diagram

$$\begin{array}{ccc} H & & & G \\ \downarrow^{\ \downarrow} & & & \downarrow^{\ \downarrow} \\ \mathbb{Z}^n & \stackrel{A}{\longrightarrow} \mathbb{Z}^n \end{array}$$

where $A \in M_n(\mathbb{Z})$. Show that

$$[G:H] = |\det A|.$$